Finding optimal Bayesian networks using precedence constraints
نویسندگان
چکیده
We consider the problem of finding a directed acyclic graph (DAG) that optimizes a decomposable Bayesian network score. While in a favorable case an optimal DAG can be found in polynomial time, in the worst case the fastest known algorithms rely on dynamic programming across the node subsets, taking time and space 2n, to within a factor polynomial in the number of nodes n. In practice, these algorithms are feasible to networks of at most around 30 nodes, mainly due to the large space requirement. Here, we generalize the dynamic programming approach to enhance its feasibility in three dimensions: first, the user may trade space against time; second, the proposed algorithms easily and efficiently parallelize onto thousands of processors; third, the algorithms can exploit any prior knowledge about the precedence relation on the nodes. Underlying all these results is the key observation that, given a partial order P on the nodes, an optimal DAG compatible with P can be found in time and space roughly proportional to the number of ideals of P , which can be significantly less than 2n. Considering sufficiently many carefully chosen partial orders guarantees that a globally optimal DAG will be found. Aside from the generic scheme, we present and analyze concrete tradeoff schemes based on parallel bucket orders.
منابع مشابه
SINGLE MACHINE DUE DATE ASSIGNMENT SCHEDULING PROBLEM WITH PRECEDENCE CONSTRAINTS AND CONTROLLABLE PROCESSING TIMES IN FUZZY ENVIRONMENT
In this paper, a due date assignment scheduling problem with precedence constraints and controllable processing times in uncertain environment is investigated, in which the basic processing time of each job is assumed to be the symmetric trapezoidal fuzzy number, and the linear resource consumption function is used.The objective is to minimize the crisp possibilistic mean (or expected) value of...
متن کاملImprove Estimation and Operation of Optimal Power Flow(OPF) Using Bayesian Neural Network
The future of development and design is impossible without study of Power Flow(PF), exigency the system outcomes load growth, necessity add generators, transformers and power lines in power system. The urgency for Optimal Power Flow (OPF) studies, in addition to the items listed for the PF and in order to achieve the objective functions. In this paper has been used cost of generator fuel, acti...
متن کاملA Two-Threshold Guard Channel Scheme for Minimizing Blocking Probability in Communication Networks
In this paper, we consider the call admission problem in cellular network with two classes of voice users. In the first part of paper, we introduce a two-threshold guard channel policy and study its limiting behavior under the stationary traffic. Then we give an algorithm for finding the optimal number of guard channels. In the second part of this paper, we give an algorithm, which minimizes th...
متن کاملSingle Machine Scheduling Problem with Precedence Constraints and Deteriorating Jobs
This paper considers the single machine scheduling problem with precedence constraints and deteriorating jobs. A mathematical model based on binary integer programming (BIP) is developed. By these precedence constraints, jobs can not start before completion of its all predecessors. The represented model is in two steps, in step one the earliest starting time of each job is computed, then the re...
متن کاملFault Management in Communication Networks: Test Scheduling with a Risk-Sensitive Criterion and Precedence Constraints
We consider the problem of determining the optimal sequence of tests for the discovery of a faulty component, e.g., in a telecommunications network, where there is a random cost associated with testing a component. A novel feature in our approach is that a risksensitive performance criterion is used in order to rank different competing schedules. We characterize optimal schedules both when the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 14 شماره
صفحات -
تاریخ انتشار 2013